Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ann Bot ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527418

RESUMO

BACKGROUND AND AIMS: The geographic origin and evolutionary mechanisms underpinning the rich and distinctive New Caledonian flora remain poorly understood. This is due to the complex geological past of the island and to the scarcity of well-resolved species-level phylogenies. Here, we infer phylogenetic relationships and divergence times of New Caledonian palms, which comprise 40 species. We use this framework to elucidate the biogeography of New Caledonian palm lineages, and to explore how extant species may have formed. METHODS: A phylogenetic tree including 37 New Caledonian palm species and 77 relatives from tribe Areceae was inferred from 151 nuclear genes obtained by targeted sequencing. Fossil-calibrated divergence times were estimated, and ancestral ranges were inferred. Ancestral and extant ecological preferences in terms of elevation, precipitation and substrate were compared between New Caledonian sister species to explore their possible roles as drivers of speciation. KEY RESULTS: New Caledonian palms form four well-supported clades, inside which relationships are well resolved. Our results support the current classification, but suggest that Veillonia and Campecarpus should be resurrected, and fail to clarify whether Rhopalostylidinae is sister to or nested in Basseliniinae. New Caledonian palm lineages derive from New Guinean and Australian ancestors, which reached the island through at least three independent dispersal events between the Eocene and Miocene. Palms then dispersed out of New Caledonia at least five times, mainly towards Pacific islands. Geographic and ecological transitions associated with speciation events differed across time and genera. Substrate transitions were more frequently associated with older than younger events. CONCLUSIONS: Neighbouring areas and a mosaic of local habitats shaped New Caledonia's palm flora, and the island played a significant role in generating palm diversity across the Pacific region. This new spatio-temporal framework will enable population-level ecological and genetic studies to further unpick the mechanisms underpinning New Caledonian palm endemism.

2.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
3.
Nat Commun ; 15(1): 1100, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321017

RESUMO

Mountains are among the most biodiverse places on Earth, and plant lineages that inhabit them have some of the highest speciation rates ever recorded. Plant diversity within the alpine zone - the elevation above which trees cannot grow-contributes significantly to overall diversity within mountain systems, but the origins of alpine plant diversity are poorly understood. Here, we quantify the processes that generate alpine plant diversity and their changing dynamics through time in Saxifraga (Saxifragaceae), an angiosperm genus that occurs predominantly in mountain systems. We present a time-calibrated molecular phylogenetic tree for the genus that is inferred from 329 low-copy nuclear loci and incorporates 73% (407) of known species. We show that upslope biome shifts into the alpine zone are considerably more prevalent than dispersal of alpine specialists between regions, and that the rate of upslope biome shifts increased markedly in the last 5 Myr, a timeframe concordant with a cooling and fluctuating climate that is likely to have increased the extent of the alpine zone. Furthermore, alpine zone specialists have lower speciation rates than generalists that occur inside and outside the alpine zone, and major speciation rate increases within Saxifraga significantly pre-date increased rates of upslope biome shifts. Specialisation to the alpine zone is not therefore associated with speciation rate increases. Taken together, this study presents a quantified and broad scale perspective of processes underpinning alpine plant diversity.


Assuntos
Saxifragaceae , Filogenia , Ecossistema , Clima , Biodiversidade
4.
New Phytol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009920

RESUMO

Poales are one of the most species-rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution. We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations. Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species-rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories. The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.

5.
Plant Cell ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824826

RESUMO

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

6.
Curr Biol ; 33(19): 4052-4068.e6, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37659415

RESUMO

The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.


Assuntos
Arabidopsis , Brassicaceae , Filogenia , Brassicaceae/genética , Arabidopsis/genética , Biodiversidade
7.
Ann Bot ; 132(2): 255-267, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37501620

RESUMO

BACKGROUND AND AIMS: Understanding diaspore morphology and how much a species invests on dispersal appendages is key for improving our knowledge of dispersal in fragmented habitats. We investigate diaspore morphological traits in high-Andean Compositae and their main abiotic and biotic drivers and test whether they play a role in species distribution patterns across the naturally fragmented high-Andean grasslands. METHODS: We collected diaspore trait data for 125 Compositae species across 47 tropical high-Andean summits, focusing on achene length and pappus-to-achene length ratio, with the latter as a proxy of dispersal investment. We analysed the role of abiotic (temperature, elevation and latitude) and biotic factors (phylogenetic signal and differences between tribes) on diaspore traits and whether they are related to distribution patterns across the Andes, using phylogenomics, distribution modelling and community ecology analyses. KEY RESULTS: Seventy-five percent of the studied species show small achenes (length <3.3 mm) and 67% have high dispersal investment (pappus length at least two times the achene length). Dispersal investment increases with elevation, possibly to compensate for lower air density, and achene length increases towards the equator, where non-seasonal climate prevails. Diaspore traits show significant phylogenetic signal, and higher dispersal investment is observed in Gnaphalieae, Astereae and Senecioneae, which together represent 72% of our species. High-Andean-restricted species found across the tropical Andes have, on average, the pappus four times longer than the achene, a significantly higher dispersal investment than species present only in the northern Andes or only in the central Andes. CONCLUSIONS: Small achenes and high diaspore dispersal investment dominate among high-Andean Compositae, traits typical of mostly three tribes of African origin; but traits are also correlated with the environmental gradients within the high-Andean grasslands. Our results also suggest that diaspore dispersal investment is likely to shape species distribution patterns in naturally fragmented habitats.


Assuntos
Asteraceae , Filogenia , Ecossistema , Ecologia , Clima
8.
New Phytol ; 240(4): 1636-1646, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37496281

RESUMO

Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conservation. Here, we analyse the global distribution of plant PD, which remains poorly understood despite plants being the foundation of most terrestrial habitats and key to human livelihoods. Capitalising on a recently completed, comprehensive global checklist of vascular plants, we identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distributed than species diversity; (2) areas of highest PD (often called 'hotspots') do not maximise cumulative PD; and (3) many biomes are needed to maximise cumulative PD. Our results support all three hypotheses: more than twice as many regions are required to cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative PD substantially differ from the regions with outstanding individual PD; and while (sub-)tropical moist forest regions dominate across PD hotspots, other forest types and open biomes are also essential. Safeguarding PD in the Anthropocene (including the protection of some comparatively species-poor areas) is a global, increasingly recognised responsibility. Having highlighted countries with outstanding unique plant PD, further analyses are now required to fully understand the global distribution of plant PD and associated conservation imperatives across spatial scales.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , Filogenia , Conservação dos Recursos Naturais/métodos , Plantas , Ecossistema
9.
Front Plant Sci ; 14: 1063174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959945

RESUMO

Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order's spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.

10.
BMC Biol ; 21(1): 50, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882831

RESUMO

BACKGROUND: Over the past decade, phylogenomics has greatly advanced our knowledge of angiosperm evolution. However, phylogenomic studies of large angiosperm families with complete species or genus-level sampling are still lacking. The palms, Arecaceae, are a large family with ca. 181 genera and 2600 species and are important components of tropical rainforests bearing great cultural and economic significance. Taxonomy and phylogeny of the family have been extensively investigated by a series of molecular phylogenetic studies in the last two decades. Nevertheless, some phylogenetic relationships within the family are not yet well-resolved, especially at the tribal and generic levels, with consequent impacts for downstream research. RESULTS: Plastomes of 182 palm species representing 111 genera were newly sequenced. Combining these with previously published plastid DNA data, we were able to sample 98% of palm genera and conduct a plastid phylogenomic investigation of the family. Maximum likelihood analyses yielded a robustly supported phylogenetic hypothesis. Phylogenetic relationships among all five palm subfamilies and 28 tribes were well-resolved, and most inter-generic phylogenetic relationships were also resolved with strong support. CONCLUSIONS: The inclusion of nearly complete generic-level sampling coupled with nearly complete plastid genomes strengthened our understanding of plastid-based relationships of the palms. This comprehensive plastid genome dataset complements a growing body of nuclear genomic data. Together, these datasets form a novel phylogenomic baseline for the palms and an increasingly robust framework for future comparative biological studies of this exceptionally important plant family.


Assuntos
Arecaceae , Magnoliopsida , Arecaceae/genética , Filogenia , Genômica , Plastídeos/genética
11.
Mol Phylogenet Evol ; 182: 107702, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781032

RESUMO

The angiosperm family Primulaceae is morphologically diverse and distributed nearly worldwide. However, phylogenetic uncertainty has obstructed the identification of major morphological and biogeographic transitions within the clade. We used target capture sequencing with the Angiosperms353 probes, taxon-sampling encompassing nearly all genera of the family, tree-based sequence curation, and multiple phylogenetic approaches to investigate the major clades of Primulaceae and their relationship to other Ericales. We generated dated phylogenetic trees and conducted broad-scale biogeographic analyses as well as stochastic character mapping of growth habit. We show that Ardisia, a pantropical genus and the largest in the family, is not monophyletic, with at least 19 smaller genera nested within it. Neotropical members of Ardisia and several smaller genera form a clade, an ancestor of which arrived in the Neotropics and began diversifying about 20 Ma. This Neotropical clade is most closely related to Elingamita and Tapeinosperma, which are most diverse on islands of the Pacific. Both Androsace and Primula are non-monophyletic by the inclusion of smaller genera. Ancestral state reconstructions revealed that there have either been parallel transitions to an herbaceous habit in Primuloideae, Samolus, and at least three lineages of Myrsinoideae, or a common ancestor of nearly all Primulaceae was herbaceous. Our results provide a robust estimate of phylogenetic relationships across Primulaceae and show that a revised classification of Myrsinoideae and several other clades within the family is necessary to render all genera monophyletic.


Assuntos
Primulaceae , Filogenia , Primulaceae/genética , Sequência de Bases , Análise de Sequência de DNA , DNA de Plantas/genética
12.
Am J Bot ; 110(2): e16117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36480380

RESUMO

PREMISE: Recent phylogenetic studies of the Araceae have confirmed the position of the duckweeds nested within the aroids, and the monophyly of a clade containing all the unisexual flowered aroids plus the bisexual-flowered Calla palustris. The main objective of the present study was to better resolve the deep phylogenetic relationships among the main lineages within the family, particularly the relationships between the eight currently recognized subfamilies. We also aimed to confirm the phylogenetic position of the enigmatic genus Calla in relation to the long-debated evolutionary transition between bisexual and unisexual flowers in the family. METHODS: Nuclear DNA sequence data were generated for 128 species across 111 genera (78%) of Araceae using target sequence capture and the Angiosperms 353 universal probe set. RESULTS: The phylogenomic data confirmed the monophyly of the eight Araceae subfamilies, but the phylogenetic position of subfamily Lasioideae remains uncertain. The genus Calla is included in subfamily Aroideae, which has also been expanded to include Zamioculcadoideae. The tribe Aglaonemateae is newly defined to include the genera Aglaonema and Boycea. CONCLUSIONS: Our results strongly suggest that new research on African genera (Callopsis, Nephthytis, and Anubias) and Calla will be important for understanding the early evolution of the Aroideae. Also of particular interest are the phylogenetic positions of the isolated genera Montrichardia, Zantedeschia, and Anchomanes, which remain only moderately supported here.


Assuntos
Araceae , Magnoliopsida , Filogenia , Araceae/genética , Magnoliopsida/genética , Análise de Sequência de DNA
13.
Science ; 378(6623): eabf0869, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454829

RESUMO

Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique "living laboratory" for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity.


Assuntos
Biodiversidade , Evolução Biológica , Humanos , Biota , Florestas , Madagáscar , Filogenia
14.
Science ; 378(6623): eadf1466, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454830

RESUMO

Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Humanos , Teorema de Bayes , Biota , Madagáscar , Mamíferos , Plantas
15.
Front Plant Sci ; 13: 889988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909765

RESUMO

Convolvulaceae is a family of c. 2,000 species, distributed across 60 currently recognized genera. It includes species of high economic importance, such as the crop sweet potato (Ipomoea batatas L.), the ornamental morning glories (Ipomoea L.), bindweeds (Convolvulus L.), and dodders, the parasitic vines (Cuscuta L.). Earlier phylogenetic studies, based predominantly on chloroplast markers or a single nuclear region, have provided a framework for systematic studies of the family, but uncertainty remains at the level of the relationships among subfamilies, tribes, and genera, hindering evolutionary inferences and taxonomic advances. One of the enduring enigmas has been the relationship of Cuscuta to the rest of Convolvulaceae. Other examples of unresolved issues include the monophyly and relationships within Merremieae, the "bifid-style" clade (Dicranostyloideae), as well as the relative positions of Erycibe Roxb. and Cardiochlamyeae. In this study, we explore a large dataset of nuclear genes generated using Angiosperms353 kit, as a contribution to resolving some of these remaining phylogenetic uncertainties within Convolvulaceae. For the first time, a strongly supported backbone of the family is provided. Cuscuta is confirmed to belong within family Convolvulaceae. "Merremieae," in their former tribal circumscription, are recovered as non-monophyletic, with the unexpected placement of Distimake Raf. as sister to the clade that contains Ipomoeeae and Decalobanthus Ooststr., and Convolvuleae nested within the remaining "Merremieae." The monophyly of Dicranostyloideae, including Jacquemontia Choisy, is strongly supported, albeit novel relationships between genera are hypothesized, challenging the current tribal delimitation. The exact placements of Erycibe and Cuscuta remain uncertain, requiring further investigation. Our study explores the benefits and limitations of increasing sequence data in resolving higher-level relationships within Convolvulaceae, and highlights the need for expanded taxonomic sampling, to facilitate a much-needed revised classification of the family.

16.
Proc Natl Acad Sci U S A ; 119(27): e2120662119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35767644

RESUMO

Species richness varies immensely around the world. Variation in the rate of diversification (speciation minus extinction) is often hypothesized to explain this pattern, while alternative explanations invoke time or ecological carrying capacities as drivers. Focusing on seed plants, the world's most important engineers of terrestrial ecosystems, we investigated the role of diversification rate as a link between the environment and global species richness patterns. Applying structural equation modeling to a comprehensive distribution dataset and phylogenetic tree covering all circa 332,000 seed plant species and 99.9% of the world's terrestrial surface (excluding Antarctica), we test five broad hypotheses postulating that diversification serves as a mechanistic link between species richness and climate, climatic stability, seasonality, environmental heterogeneity, or the distribution of biomes. Our results show that the global patterns of species richness and diversification rate are entirely independent. Diversification rates were not highest in warm and wet climates, running counter to the Metabolic Theory of Ecology, one of the dominant explanations for global gradients in species richness. Instead, diversification rates were highest in edaphically diverse, dry areas that have experienced climate change during the Neogene. Meanwhile, we confirmed climate and environmental heterogeneity as the main drivers of species richness, but these effects did not involve diversification rates as a mechanistic link, calling for alternative explanations. We conclude that high species richness is likely driven by the antiquity of wet tropical areas (supporting the "tropical conservatism hypothesis") or the high ecological carrying capacity of warm, wet, and/or environmentally heterogeneous environments.


Assuntos
Extinção Biológica , Especiação Genética , Plantas , Biodiversidade , Clima , Conjuntos de Dados como Assunto , Ecossistema , Filogenia , Plantas/classificação , Plantas/genética
17.
New Phytol ; 236(2): 433-446, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35717562

RESUMO

Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.


Assuntos
Arecaceae , Retroelementos , Arecaceae/genética , Evolução Molecular , Tamanho do Genoma , Genoma de Planta , Filogenia , Análise de Sequência de DNA
18.
Cladistics ; 38(5): 595-611, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35569142

RESUMO

We examined the impact of successive alignment quality-control steps on downstream phylogenomic analyses. We applied a recently published phylogenomics pipeline that was developed for the Angiosperms353 target-sequence-capture probe set to the flowering plant order Celastrales. Our final dataset consists of 158 species, including at least one exemplar from all 109 currently recognized Celastrales genera. We performed nine quality-control steps and compared the inferred resolution, branch support, and topological congruence of the inferred gene and species trees with those generated after each of the first six steps. We describe and justify each of our quality-control steps, including manual masking, in detail so that they may be readily applied to other lineages. We found that highly supported clades could generally be relied upon even if stringent orthology and alignment quality-control measures had not been applied. But separate instances were identified, for both concatenation and coalescence, wherein a clade was highly supported before manual masking but then subsequently contradicted. These results are generally reassuring for broad-scale analyses that use phylogenomics pipelines, but also indicate that we cannot rely exclusively on these analyses to conclude how challenging phylogenetic problems are best resolved.


Assuntos
Celastrales , Magnoliopsida , Magnoliopsida/genética , Filogenia
19.
Syst Biol ; 71(5): 1124-1146, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35167690

RESUMO

Phylogenetic analyses are increasingly being performed with data sets that incorporate hundreds of loci. Due to incomplete lineage sorting, hybridization, and horizontal gene transfer, the gene trees for these loci may often have topologies that differ from each other and from the species tree. The effect of these topological incongruences on divergence time estimation has not been fully investigated. Using a series of simulation experiments and empirical analyses, we demonstrate that when topological incongruence between gene trees and the species tree is not accounted for, the temporal duration of branches in regions of the species tree that are affected by incongruence is underestimated, whilst the duration of other branches is considerably overestimated. This effect becomes more pronounced with higher levels of topological incongruence. We show that this pattern results from the erroneous estimation of the number of substitutions along branches in the species tree, although the effect is modulated by the assumptions inherent to divergence time estimation, such as those relating to the fossil record or among-branch-substitution-rate variation. By only analyzing loci with gene trees that are topologically congruent with the species tree, or only taking into account the branches from each gene tree that are topologically congruent with the species tree, we demonstrate that the effects of topological incongruence can be ameliorated. Nonetheless, even when topologically congruent gene trees or topologically congruent branches are selected, error in divergence time estimates remains. This stems from temporal incongruences between divergence times in species trees and divergence times in gene trees, and more importantly, the difficulty of incorporating necessary assumptions for divergence time estimation. [Divergence time estimation; gene trees; species tree; topological incongruence.].


Assuntos
Fósseis , Modelos Genéticos , Simulação por Computador , Hibridização Genética , Filogenia
20.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042802

RESUMO

A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/normas , Animais , Biodiversidade , Genômica/métodos , Humanos , Padrões de Referência , Valores de Referência , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...